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Fast and slow degrees of freedom coupling two different reservoirs

O. M. Ritter, P. C. T. D’Ajello, and W. Figueiredo
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, Santa Catarina, Brazil

~Received 23 September 2003; published 29 January 2004!

We considered a Hamiltonian system that can be described by two generalized variables. One of them
relaxes quickly when the system is in contact with a heat bath at fixed temperature, while the second one, the
slow variable, mimics the interaction of the system with another heat bath at a lower temperature. The coupling
between these variables leads to an energy flow between the heat baths. Allahverdyan and Nieuwenhuizen
@Phys. Rev. E62, 845~2000!# proposed a formalism to deal with such problem and calculated the steady states
of the system and some related properties as entropy production, energy dissipation, etc. In this work we
applied the formalism to a coupled system of ideal gases and also to an ideal gas interacting with a harmonic
oscillator. If the temperatures of the heat baths are not too close, the Onsager relations do not apply.

DOI: 10.1103/PhysRevE.69.016119 PACS number~s!: 05.70.Ln, 64.70.Pf
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I. INTRODUCTION

Most processes occurring in nature are nonequilibri
ones and, as it is well known, there is no complete and
tailed theory to account for these phenomena. On the o
hand, statistical thermodynamics is a well established the
which can be derived from the Gibbsian theory of the e
sembles. The books of Callen@1# and Landau and Lifshitz
@2# are fundamental references in the field of equilibriu
statistical thermodynamics. In many situations we are m
interested in processes rather than in a clear definition
states. Then, we very often ask for the rates of physical p
cesses and what general properties can be derived wit
looking for the details of the system. The scope of noneq
librium thermodynamics is ample and it is intended to d
scribe physical, chemical, and biological processes. Notw
standing the lack of a general theory, there are so
formulations with emphasis in near equilibrium phenome
the most notable of them is the classical reciprocity relati
advanced by Onsager@3#. After the appearance of the On
sager reciprocity theorem, this field had a more consis
development, and nowadays some texts are also referenc
literature, like the books of de Groot and Mazur@4#, and
Prigogine@5#.

The process we are interested in this work is the flow
energy between two heat baths at different temperatures.
flow of energy is mediated by a system described by t
generalized coordinates. The interaction of the system w
the heat bath at higher temperatureT1 is made through a fas
variable x1, while the heat bath at lower temperatureT2
interacts with the slow variablex2. The coupling between the
heat baths is accomplished by an interaction term involv
the two variablesx1 andx2. Allahverdyan and Nieuwenhui
zen @6# formulated a very nice theory to treat this kind
problem when there is a large separation between the re
ation times of these variables. In fact, they applied their f
malism to a pair of weakly interacting harmonic oscillato
showing the breakdown of the Onsager relations ifT1 is not
close toT2. An interesting result that arises from their ge
eral formalism is the proportionality between the entro
production and energy dissipation rates, to leading orde
the ratio of the two relaxation times.
1063-651X/2004/69~1!/016119~6!/$22.50 69 0161
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The purpose of this paper is twofold: first, we review
the formalism, stressing some points that seemed to us
important for a complete understanding of the method. S
ond, we applied the formalism to two simple systems. T
simplest system we devised is the ideal gas, where
Hamiltonian contains only an interacting term between
two variablesx1 andx2. Besides, we also considered a sy
tem, where the fast variable represents an ideal gas and
slow variable the harmonic oscillator. In both examples,
results we found are very similar to those found by Allahv
dyan and Nieuwenhuizen for the two harmonic oscillato
case. This paper is organized as follows: in Sec. II we rev
the general formalism proposed by Allahverdyan and Ni
wenhuizen~AN!, detailing some steps of the derivation. Se
tion III is devoted to some applications of the formalism. T
cases for the interaction between two ideal gases, and
interaction between an ideal gas and a harmonic oscill
are explicitly considered. Finally, in Sec. IV, we present o
conclusions.

II. THE FORMALISM

The system is represented by a general Hamilton
H(x1 ,x2), wherex1 and x2 are two generalized stochast
variables. The system interacts with two different heat ba
at fixed temperaturesT1 andT2, where we takeT2,T1. The
interaction with the hotter reservoir is made through the f
variablex1, while with the colder one is via the slow var
able x2. The indirect interaction between the reservoirs
implemented by adding a coupling term between the v
ablesx1 andx2 into the Hamiltonian. A key parameter in th
formalism is the ratiog5G1 /G2, whereG1 and G2 are the
relaxation times associated with the variablesx1 andx2, re-
spectively. In particular, we will focus our attention in cas
whereg!1. The formalism departs from the Langevin equ
tion for the variablesx1 andx2

G i ẋi52
]

]xi
H~x1 ,x2!1h i~ t !, i 51,2, ~1!

where
©2004 The American Physical Society19-1
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^h i~ t !h j~ t8!&52G iTid i j d~ t2t8!, i , j 51,2. ~2!

From Eqs. ~1! and ~2! we obtain the associated Fokke
Planck equation

]

]t
P~x1 ,x2 ;t !1(

i 51

2
]

]xi
Ji~x1 ,x2 ;t !50, ~3!

Ji~x1 ,x2 ;t !52
1

G i
P~x1 ,x2 ;t !

]

]xi
H~x1 ,x2!

2
Ti

G i

]

]xi
P~x1 ,x2 ;t !, ~4!

whereP(x1 ,x2 ;t) is the probability distribution,J1 and J2
are the corresponding currents of probability. Following A
the stationary distribution to orderg0 is given by

P0~x1 ,x2!5P0~x2!P0~x1ux2!, ~5!

where

P0~x1ux2!5
1

Z~x2!
exp@2b1H~x1 ,x2!#,

Z~x2!5E dx1 exp@2b1H~x1 ,x2!#, ~6!

P0~x2!5
ZT1/T2~x2!

Z , Z5E dx2ZT1 /T2~x2!. ~7!

As usualb151/T1, where we are taking the Boltzmann co
stant equal to unity.

Assuming that Eq.~5! will remain valid for nonstationary
states, that is,

P~x1 ,x2 ;t !5P~x2 ;t !P~x1ux2 ;t !, ~8!

we can write the following general definitions for the me
energy and entropy:

U5E dx1dx2P~x1 ,x2 ;t !H~x1 ,x2!, ~9!

S52E dx1dx2P~x1 ,x2 ;t !ln P~x1 ,x2 ;t !. ~10!

It is interesting to note that this expression for the entropy@7#
can be written asS5S11S2, where

S15E dx2P~x2 ;t !F2E dx1P~x1ux2 ;t !ln P~x1ux2 ;t !G ,
~11!

S252E dx2P~x2 ;t !ln P~x2 ;t !,

whereS1 is the entropy of the fast variablex1, averaged over
the slow variablex2 . S2 is the entropy associated with th
slow variablex2. According to AN a free energy can b
01611
defined for this two-temperature system, namely,F
52T2ln Z. This definition of F allows to generalize the
usual expression for the free energy of a single heat bat

F5U2T1S12T2S2 , ~12!

where

S ]F

]T1
D

T2

52S1 , S ]F

]T2
D

T1

52S2 . ~13!

For a system in contact with two different heat bath
there will be a constant flow of thermal energy at the stea
states. As a consequence, there will be also a constant
duction of entropy and a dissipation of energy. As we a
interested in computing these quantities, keeping terms
yondg0, we look for a steady state probability distribution
the following form:

P1~x1 ,x2!5P0~x1 ,x2!@12gA~x1 ,x2!#1O~g2!, ~14!

where A(x1 ,x2) must be determined. To accomplish th
goal, we note that the stationary probability and its deriv
tives must vanish at the boundaries of the system. Also,
function A(x1 ,x2) must satisfy the orthogonality conditio
*dx1dx2A(x1 ,x2)P0(x1 ,x2)50. From the stationary condi
tion for the probability, (]/]t)P(x1 ,x2 ;t)50, we arrive at
the following partial differential equation to orderg:

T1

]2A

]x1
2

1S ]H

]x1
12T1

]

]x1
ln P0D ]A

]x1

5
]2H

]x2
2

1
]H

]x2

]

]x2
ln P01

T2

P0

]2P0

]x2
2

. ~15!

From this equation we obtain a general expression for
auxiliary function A(x1 ,x2). However, this solution mus
also be consistent to orderg2. This implies that the function
A(x1 ,x2) must also satisfy the eigenvalue equation

F ]2H

]x2
2

1
]H

]x2

]

]x2
1T2

]2

]x2
2G ~P0A!5l~P0A!. ~16!

Using Eqs.~4! and~14! we obtain the equations for the cu
rents in the stationary state,

J1~x1 ,x2!5
T1

G2
P0~x1 ,x2!

]

]x1
A~x1 ,x2!, ~17!

J2~x1 ,x2!5
~T12T2!

T1G2
P0~x1 ,x2!@dF2~x1 ,x2!#

2gP0~x1 ,x2!

3FA~x1 ,x2!
~T12T2!

T1G2
@dF2~x1 ,x2!#

2
T2

G2

]

]x2
A~x1 ,x2!G . ~18!
9-2
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As we seek expressions for the entropy production and
ergy dissipation up to terms of orderg2, we kept in the
expression forJ2(x1 ,x2) a second order term ing. The term
dF2(x1 ,x2) that appears in the equation ofJ2(x1 ,x2), is
defined by

dF2~x1 ,x2!52
]

]x2
H~x1 ,x2!1E dyP0~yux2!

]

]x2
H~y,x2!.

~19!

As pointed out by AN, this term represents the differen
between the force acting on the subsystem governed by
slow variablex2 and its mean value obtained by averagi
over the fast variablex1. The change of the total entrop
that is, the variation of the system entropy plus the variat
of the entropies of both heat baths can be written, at
stationary state, as

ṠTot5~b12b2!Q̇2 , ~20!

where

Q̇252E dx1dx2H~x1 ,x2!
]

]x2
J2~x1 ,x2 ;t !. ~21!

To obtain Eq.~20! we had to assume that the entropy a
energy of the system are constant and that the heat bath
indeed in equilibrium.

By taking the time derivative of Eq.~12!, using Eqs.~9!–
~11! and employing the definitions ofJ1 andJ2 as given by
Eq. ~4!, we arrive at the following equation for the free e
ergy rate:

Ḟ~ t !5~T12T2!E dx1dx2J2~x1 ,x2 ;t !
]

]x2
ln P~x1ux2 ;t !

2E dx1dx2P~x1 ,x2 ;t !(
i 51

2
1

G i
F ]

]xi
H~x1 ,x2!

1Ti

]

]xi
ln P~x1 ,x2 ;t !G2

. ~22!

The preceding equation has a very nice interpretation. W
ing the free energy rate asḞ5Ẇ2Ṗ, we can identifyẆ
with the work done to keep the system in the nonequilibri
state. On the other hand, the strictly positive termṖ is the
energy dissipation. Therefore, in the stationary state
which Ḟ50, the work done must be equal to the dissipa
energy.

We can get explicit expressions for the total entropy p
duction rateṠTot and energy dissipation rateṖ at the steady
state. In order to findṠTot , we start from Eq.~20!, and use of
Eqs.~21! and ~18! gives

ṠTot5g
k2

T2G1
^~dF2!2&11g2

k

G1
K ~dF2!

]A

]x2
L

0

, ~23!

wherek5(T12T2)/T1, and the labels0(1) in thebrackets,
mean averages with respect to distributionsP0(1) . In the
01611
n-

e
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e
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case ofṖ, we start from the second term on the right-ha
side of Eq.~22!, which can be reduced with the help of E
~4! to

Ṗ5E dx1dx2

1

P1~x1 ,x2!
~G1J1

21G2J2
2!. ~24!

Finally, introducing in the last expression, Eqs.~17! and
~18! we find, after some algebraic manipulations, an expr
sion for Ṗ that reads

Ṗ5g
k2

G1
^~dF2!2&11g2

k~2T22T1!

G1
K ~dF2!

]A

]x2
L

0

.

~25!

The most important result is the general linear relation
served betweenṖ andṠTot to the leading order ing, namely,

Ṗ5T2ṠTot1O~g2!, ~26!

where only the temperature of the colder heat bath app
explicitly.

III. APPLICATIONS

In what follows we will be considering three examples
application of the formalism presented in the preceding s
tion.

A. Two harmonic oscillators

The interaction of an harmonic oscillator with a heat ba
is a well studied problem. For instance, Ford, Kac, and M
zur @8# have shown that a particle coupled harmonically
the bath and subjected to an arbitrary force to a fixed ce
exhibits a Brownian motion. They considered the heat b
as a chain of coupled harmonic oscillators, and the rela
Langevin equation is a contracted description, where the b
is described only by two parameters, the temperature and
damping constant. Also, Ullersma@9# consider a similar sys-
tem, where the oscillator is linearly coupled with the osc
lators that model the heat bath. He found an exact solu
for this system when the oscillators modeling the bath
not coupled themselves. The same results were also der
by Caldeira and Legget@10# based on the application of th
influence-functional method of Feynman and Vernon to
quantum version of the problem studied by Ullersma. In
limit where the Planck constant goes to zero, their res
reduce to the classical Fokker-Planck equation.

Here we consider the same model studied by AN. T
Hamiltonian for the model system is

H5 1
2 ax1

21 1
2 ax2

21gx1
2x2

2 , ~27!

wherea and g are positive constants. The system is rep
sented by a pair of weakly interacting oscillators, and
keep only first order terms ing. This Hamiltonian model is
very symmetrical, and this fact will enable us to determi
9-3
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with a little effort the properties of interest. Following th
formalism outlined in the preceding section, the distributi
P0(x1 ,x2) is

P0~x1 ,x2!5S b1b2a2

4p2 D 1/2

expS 2
b1ax1

2

2
2

b2ax2
2

2 D
3S 11

gT1

a2
2

gT1b2x2
2

a

1
gx2

2

a
2gb1x1

2x2
2D . ~28!

The differential equation forA(x1 ,x2) is given by

T1

]2A

]x1
2

2~ax112gx1x2
2!

]A

]x1

52g~T12T2!S b1x1
21b2x2

22b1b2ax1
2x2

22
1

aD .

~29!

The general solution for this equation is

A~x1 ,x2!5gc~x2!1g
k

a
~b2ax1

2x2
22x1

2!, ~30!

where c(x2) is an arbitrary function ofx2. To guarantee
consistency to orderg2, Eq. ~16! reduces to

T2

]2A

]x2
2

2ax2

]A

]x2
5lA. ~31!

Expandingc(x2) in a power series ofx2 we find that l
522a, and c(x2)5a(12b2ax2

2). The expression for
A(x1 ,x2) becomes

A~x1 ,x2!5ga2gab2ax2
21g

k

a
~b2ax1

2x2
22x1

2!. ~32!

This solution automatically satisfies the orthogonality con
tion. An elegant manner to find the yet undetermined c
stanta is to explore the symmetries of the differential equ
tion for A(x1 ,x2), Eq. ~28!. Observing that
A(x2 ,x1 ;b2 ,b1)52A(x1 ,x2 ;b1 ,b2), we find thata5(T1
2T2)/a2. Then, the final expression forA(x1 ,x2) is

A~x1 ,x2!5
g~T12T2!

a2
~12b1ax1

2!~12b2ax2
2!. ~33!

Once we have determinedA(x1 ,x2) the entropy production
and energy dissipation calculations follow straightforward

B. Two ideal gases

Now let us consider another example of application of
previous formalism. The Hamiltonian model for the syste
is taken as
01611
-
-

-

e

H5g~x12x2!2. ~34!

This system can be thought as being formed by two id
gases. One of them, described by a fast variablex1, is in
contact with the heat bath at temperatureT1, while the other,
described by the slow variablex2, is in contact with the
colder heat bath at temperatureT2. We can think of these
two gases as having very different masses, and the param
g can be related to the ratio between the masses of the
and heavy gases@11#. The gases are confined to a limite
region of space between2L/2,x1,2,L/2, and we have as
sumed a weak interaction between them, as given by
~34!. As in the case of two coupled harmonic oscillato
only configurational variables are considered.

In this case, we obtain the following expression f
P0(x1 ,x2):

P0~x1 ,x2!5
1

L2 F11g
L2

12
~b11b2!2gb1x1

22gb2x2
2

12gb1x1x2G . ~35!

The differential equation forA(x1 ,x2) is given by

T1

]2A

]x1
2

22g~x12x2!
]A

]x1
50. ~36!

Going along the same steps developed for the case of
harmonic oscillators, that is, finding the general solution
first order in g, imposing consistency up to orderg2 and
applying the orthogonality condition we obtain a very simp
solution forA(x1 ,x2), which can be written as

A~x1 ,x2!5g~b12b2!x1x252g
k

T2
x1x2 . ~37!

With this expression forA(x1 ,x2) it is easy to calculate the
entropy production and energy dissipation rates. From E
~23! and ~25!, we find

ṠTot5
g2L2

3G1

~T12T2!2

T1
2T2

S g2
g2

2 D , ~38!

Ṗ5
g2L2

3G1

~T12T2!2

T1
2 Fg2g2

~2T22T1!

2T2
G . ~39!

In this problem where we are considering heat trans
between two reservoirs, we can test the validity of the O
sager relations. These relations were derived originally
Onsager@3# for the linear regime. In our case this wou
correspond to a situation whereT1'T2. If the heat bath
temperatures are not too close, a general expression fo
Onsager relation can be employed@6# to the nonlinear re-
gime, that is,

]Q̇2

]b1
5

]Q̇1

]b2
. ~40!

From Eqs.~20! and ~23! we can write the following ex-
pression to orderg:
9-4
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]Q̇2

]b1
2

]Q̇1

]b2
5g

T2k

G1
^~dF2!2&1

1g
T2

G1
~b12b2!S ]

]b1
1

]

]b2
D ^~dF2!2&1 .

~41!

If ^(dF2)2&15b2f (b12b2), where f is any positive func-
tion, the Onsager relation, as expressed by Eq.~40!, is auto-
matically satisfied, even in the nonlinear regime. Particula
for the Hamiltonian model we are considering, given by E
~34!, we can show that̂(dF2)2&15g2L2/3. Therefore, the
Onsager relation breaks down in the nonlinear case. For
model, it is easy to show that

]Q̇2

]b1
2

]Q̇1

]b2
5g

g2L2

3G1

T2

T1
~T12T2!. ~42!

We would like to stress that even for this very simple mo
of two weakly interacting ideal gases the Onsager relati
are violated.

C. Ideal gas and harmonic oscillator

As a final example, we consider a system formed by
oscillator interacting with an ideal gas. The Hamiltonian f
this system is chosen to have the following form

H5 1
2 ax2

21g~x12x2!2, ~43!

where the fast variablex1 is in contact with the heat bath a
temperatureT1, and this variable is limited to the region
2L/2,x1,L/2. The slow variablex2, describes an har
monic oscillator in contact with the heat bath at the low
temperatureT2. As usual, this variable is unbounded. In o
der to take into account a heat flow between reservoir
small coupling term was introduced into the Hamiltonian.
before, only linear terms ing will be allowed. Following the
steps of Sec. II, first we determine the probability distrib
tion functionP0(x1 ,x2), that is,

P0~x1 ,x2!5S b2a

2pL2D 1/2

expS 2
b2ax2

2

2 D S 11
gb1L2

12
1

g

a

2gb1x1
22gb2x2

212gb1x1x2D . ~44!

The partial differential equation forA(x1 ,x2) reads

T1

]2A

]x1
2

22g~x12x2!
]A

]x1
52gkb2ax1x2 . ~45!

A solution that satisfies the boundary conditions, the eig
value equation for consistency to orderg2 and the orthogo-
nality condition can be written as
01611
,
.

is

l
s

n
r

r

a

-

-

A~x1 ,x2!5gk
b1b2

3
ax1

3x22gk
b1b2

4
aL2x1x2 . ~46!

The corresponding equations for the entropy production
energy dissipation rates are given by

ṠTot5
g2L2

3G1

~T12T2!2

T1
2T2

S g2g2
aL2

10T1
D , ~47!

Ṗ5
g2L2

3G1

~T12T2!2

T1
2 Fg2g2

aL2

10

~2T22T1!

T1T2
G . ~48!

As before, this simple interacting system also leads to
violation of the general Onsager relations in the nonlin
limit, that is, we have

]Q̇2

]b1
2

]Q̇1

]b2
5g

g2L2

3G1

T2~T12T2!

T1
1O~g2!. ~49!

IV. CONCLUSIONS

In this work we have analyzed a class of systems far fr
equilibrium based on the formalism developed by Allahv
dyan and Nieuwenhuizen. They are stochastic system
contact with two reservoirs at different temperatures.
have considered only the steady adiabatic states of the
tems. One of the distinguishing features of these system
that they present very different time scales for each one o
degrees of freedom. When the difference of temperature
the two heat baths are large the systems are far from e
librium. Despite this, a non-Gibbsian stationary probabil
distribution can be associated to the systems due to the h
difference between the relaxation times found in the stud
systems. In the case of two variables, a thermodynamic
scription is found by a perturbative expansion on the ra
between the relaxation times of the fast and slow variab
We have revisited the work of Allahverdyan and Nieuwe
huizen, emphasizing some aspects of their formalism
seemed important to us. We also considered two differ
examples of application, involving steady state situations
some simple coupled Hamiltonian models. In these mod
we computed the energy dissipation and entropy produc
rates. We also verified the breakdown of the nonlinear O
sager relations for heat transfer occurring between the
baths. Even for the case in which the temperatures of the
reservoirs are very close we have a violation of the Onsa
relation, because for the models considered the producg
3g2 are very small and appear in both sides of Eq.~41!. The
formalism developed by these authors is interesting and
believe it can be extended to more complex interacting s
tems.
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