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Fast and slow degrees of freedom coupling two different reservoirs
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We considered a Hamiltonian system that can be described by two generalized variables. One of them
relaxes quickly when the system is in contact with a heat bath at fixed temperature, while the second one, the
slow variable, mimics the interaction of the system with another heat bath at a lower temperature. The coupling
between these variables leads to an energy flow between the heat baths. Allahverdyan and Nieuwenhuizen
[Phys. Rev. 62, 845(2000] proposed a formalism to deal with such problem and calculated the steady states
of the system and some related properties as entropy production, energy dissipation, etc. In this work we
applied the formalism to a coupled system of ideal gases and also to an ideal gas interacting with a harmonic
oscillator. If the temperatures of the heat baths are not too close, the Onsager relations do not apply.
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[. INTRODUCTION The purpose of this paper is twofold: first, we reviewed
the formalism, stressing some points that seemed to us very
Most processes occurring in nature are nonequilibriunimportant for a complete understanding of the method. Sec-
ones and, as it is well known, there is no complete and deond, we applied the formalism to two simple systems. The
tailed theory to account for these phenomena. On the oth&implest system we devised is the ideal gas, where the
hand, statistical thermodynamics is a well established theoryjamiltonian contains only an interacting term between the
which can be derived from the Gibbsian theory of the eniwo variablesx; andx,. Besides, we also considered a sys-
sembles. The books of Calldi] and Landau and Lifshitz tem, where the fast variable represents an ideal gas and the
[2] are fundamental references in the field of equilibriumslow variable the harmonic oscillator. In both examples, the
statistical thermodynamics. In many situations we are morgesults we found are very similar to those found by Allahver-
interested in processes rather than in a clear definition oflyan and Nieuwenhuizen for the two harmonic oscillators
states. Then, we very often ask for the rates of physical procase. This paper is organized as follows: in Sec. Il we revisit
cesses and what general properties can be derived withotite general formalism proposed by Allahverdyan and Nieu-
looking for the details of the system. The scope of nonequiwenhuizen(AN), detailing some steps of the derivation. Sec-
librium thermodynamics is ample and it is intended to de-tion Ill is devoted to some applications of the formalism. The
scribe physical, chemical, and biological processes. Notwithcases for the interaction between two ideal gases, and the
standing the lack of a general theory, there are soménteraction between an ideal gas and a harmonic oscillator
formulations with emphasis in near equilibrium phenomenagre explicitly considered. Finally, in Sec. IV, we present our
the most notable of them is the classical reciprocity relationgonclusions.
advanced by Onsag¢B]. After the appearance of the On-
sager reciprocity theorem, this field had a more consistent
development, and nowadays some texts are also references in
literature, like the books of de Groot and MaZzut], and The system is represented by a general Hamiltonian
Prigogine[5]. H(x1,X,), wherex,; andx, are two generalized stochastic
The process we are interested in this work is the flow ofvariables. The system interacts with two different heat baths
energy between two heat baths at different temperatures. The fixed temperatureg, andT,, where we takd ,<T,. The
flow of energy is mediated by a system described by twdnteraction with the hotter reservoir is made through the fast
generalized coordinates. The interaction of the system witlvariablex,, while with the colder one is via the slow vari-
the heat bath at higher temperatilteis made through a fast able x,. The indirect interaction between the reservoirs is
variable x;, while the heat bath at lower temperatufg  implemented by adding a coupling term between the vari-
interacts with the slow variabbe,. The coupling between the ablesx, andx, into the Hamiltonian. A key parameter in the
heat baths is accomplished by an interaction term involvingormalism is the ratioy=I",/T',, whereI'; andI', are the
the two variablex; andx,. Allahverdyan and Nieuwenhui- relaxation times associated with the variablgsandx,, re-
zen[6] formulated a very nice theory to treat this kind of spectively. In particular, we will focus our attention in cases
problem when there is a large separation between the relayysherey<1. The formalism departs from the Langevin equa-
ation times of these variables. In fact, they applied their fortjon for the variables; andx,
malism to a pair of weakly interacting harmonic oscillators,
showing the breakdown of the Onsager relations;ifis not P
close toT,. An interesting result that arises from their gen- Lixi=——H(Xy, %)+ (1), i=1,2, (1)
eral formalism is the proportionality between the entropy 9X;
production and energy dissipation rates, to leading order on
the ratio of the two relaxation times. where

Il. THE FORMALISM
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(mi(O)p(t"))=2I'T;§;6(t—t"), i,j=12. (2) defined for this two-temperature system, namefy,
) ) =—T,In Z. This definition of F allows to generalize the
From Egs.(1) and (2) we obtain the associated Fokker- ysya| expression for the free energy of a single heat bath
Planck equation

) F=U-T.5—-T,S,, (12
J J
EP(Xlixz-t)ﬁL;l O-)_Xi‘Ji(XLXZut):Ou (3 where
L ( JF ) < ( aF) s, 13
a —| =-S, |=| =-S.
Ji(x1, X211 = = 7 P(X1,Xp; 1) H(X1, %) 9T/, 9T,
I I
T, 9 For a system in contact with two different heat baths,
T &P(Xl,xzﬂ), (4)  there will be a constant flow of thermal energy at the steady
I 1

states. As a consequence, there will be also a constant pro-
where P(x1,%5;t) is the probability distribution]J; and J, gluct|on of entropy apd a d|35|pat|oq ,°f energy. As we are
are the corresponding currents of probability. Following AN'”"eres(tf“j in computing these quantities, keeping terms be-
the stationary distribution to ordef is given by yond y”, we look for a steady state probability distribution in
the following form:
Po(X1,X2) = Py(X2) Po(X1|X5), (5)
olXa,%a)=Po(x2) Palta Xz P1(X1,%2) = Po(X1,X2)[ 1= YA(Xy X2) ]+ O(?), (14)
where where A(Xq,X,) must be determined. To accomplish this
1 goal, we note that the stationary probability and its deriva-
Po(Xq|X2) = mex;{—ﬂlH(xl,Xz)], tives must vanish at the boundaries of the system. Also, the
2 function A(x4,X,) must satisfy the orthogonality condition
Jdx1dX,A(Xq,X2) Po(X4,X2) =0. From the stationary condi-
Z(x2)=J dxq exd — B1H(Xq,%2) ], (6)  tion for the probability, ¢/dt)P(x1,X5;t)=0, we arrive at
the following partial differential equation to order.

Z1/T2(x,) 2
Polxp)=——%——, 2= f dxZ™T2(x;). (D) AN EL PSSR, i
ox2 \oxg axy 0] axq
As usualB;=1/T,, where we are taking the Boltzmann con- 5 5
stant equal to unity. :ﬂ+ ﬂi NP+ E 9P (15)
Assuming that Eq(5) will remain valid for nonstationary (9)(% IXo IXo " P, 5)(% '

states, that is,
From this equation we obtain a general expression for the

P(X1,%2;1) = P(Xz;) P(Xq[%5;1), (8)  auxiliary function A(x;,X,). However, this solution must

also be consistent to ordef. This implies that the function

we can write the following general definitions for the meanA(Xllxz) must also satisfy the eigenvalue equation

energy and entropy:
#H oH o &

T L T, 2 |(PA =A(PA). (1)
axg 8X2 &XZ Zaxg( 0 ) ( 0

U:f XmdXZP(Xl1X2;t)H(X11X2)1 (9)

Using Egs.(4) and(14) we obtain the equations for the cur-
S= —f dx;dX,P (X1, %o 0)IN P(Xq,X5:t). (10 rents in the stationary state,

It is interesting to note that this expression for the entrijofly E J

J1(X1,X2) = == Po(X1,X2)—A(Xq1,X5), 1
can be written a$=S,;+S,, where 100 %2) I's ol 2)19X1 (X1.%2) 17
_ : . . (T1=Ta)
Si= | dxP(xa;1)| — | dxgP(xq|xz;0)In P(xq|x2;1) |, JZ(leXZ):TPO(XLXZ)[‘SFZ(XLXZ)]
(11)
= YPo(X1,X2)
=— | dxP(x5;t)InP(x5;t), T.—-T
%2 f 2P (Xzit)in P(xz:t) X A(Xl,xz)g[&:z(xl.xz)]
Tl
whereS; is the entropy of the fast variablg, averaged over T
the slow variablex,. S, is the entropy associated with the — —A(X1,Xo) |. (18)
slow variablex,. According to AN a free energy can be Iy 9x;
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As we seek expressions for the entropy production and ercase offI, we start from the second term on the right-hand

ergy dissipation up to terms of order’, we kept in the side of Eq.(22), which can be reduced with the help of Eq.

expression fod,(x;,X,) a second order term ip. The term  (4) to

SF,(X1,X,) that appears in the equation d§(x;,X5), is

defined by i 1

H=f dxdx 5~ (F1 5+ T539). (24)
Pl( 1 2)

J J
5F2(X1,X2):_8_X2H(X1,X2)+f dyPo(Y|X2)a_X2H(y,X2)-

(19 Finally, introducing in the last expression, Eq$7) and
(18) we find, after some algebraic manipulations, an expres-

As pointed out by AN, this term represents the differencesion forII that reads

between the force acting on the subsystem governed by the

slow variablex, and its mean value obtained by averaging : 5 , K( Ty)

over the fast variable;. The change of the total entropy, = 71‘_1«5':2) )ity T, 2)(9_)(2 :

that is, the variation of the system entropy plus the variation 0

of the entropies of both heat baths can be written, at the

stationary state, as

(25

The most important result is the general linear relation ob-
Sroi=(Br— )0, (200 served betweehl andS;,, to the leading order iry, namely,

where [I=T,Sro+O(1?), (26)

J dx;dX,H (X, Xz) z(X1 X,;t). (21)  Where only the temperature of the colder heat bath appears
explicitly.

To obtain Eqg.(20) we had to assume that the entropy and
energy of the system are constant and that the heat baths are IIl. APPLICATIONS
indeed in equilibrium.

By taking the time derivative of Eq12), using Eqs(9)—
(11) and employing the definitions df, andJ, as given by

In what follows we will be considering three examples of
application of the formalism presented in the preceding sec-

: ) . tion.
Eq. (4), we arrive at the following equation for the free en-
ergy rate:
A. Two harmonic oscillators
E()=(T,~T )f dxyd%da(Xg X 't)iln P(xq|%0:t) The interaction of an harmonic oscillator with a heat bath
v et 1z is a well studied problem. For instance, Ford, Kac, and Ma-

zur [8] have shown that a particle coupled harmonically to
the bath and subjected to an arbitrary force to a fixed center
exhibits a Brownian motion. They considered the heat bath
as a chain of coupled harmonic oscillators, and the related
22) !_angevi_n equation is a contracted description, where the bath
is described only by two parameters, the temperature and the
damping constant. Also, Ullersnif] consider a similar sys-
The preceding equation has a very nice interpretation. Writtem, where the oscillator is linearly coupled with the oscil-
ing the free energy rate @&=W-—1II, we can identifyW lators that model the heat bath. He found an exact solution
with the work done to keep the system in the nonequilibriumfor this system when the oscillators modeling the bath are

state. On the other hand, the strictly positive tdfiris the ~ Nnot coupled themselves. The same results were also derived
energy dissipation. Therefore, in the stationary state foPy Caldeira and Legggt0] based on the application of the

which F=0, the work done must be equal to the d|SS|patednﬂuence -functional method of Feynman and Vernon to a
energy. ’ guantum version of the problem studied by Ullersma. In the

We can get explicit expressions for the total entropy pro_I|m|t where the Planck constant goes to zero, their results

. : o . reduce to the classical Fokker-Planck equation.
duction rateSro; and energy dissipation raié at the steady Here we consider the same model studied by AN. The

state. In order to fin&;,,, we start from Eq(20), and use of  Hamiltonian for the model system is
Egs.(21) and(18) gives

Jd
_H(Xl X2)

f dxdXoP(Xq,X5; t)E

2

Jd
+Tiﬁln P(X1,Xy;t)
I

2 H=tad+ g+ g @

. K 5 , K JA

Stot yTZFl«éFz) ity F1<(5F2)axz>0’ @39 wherea and g are positive constants. The system is repre-
sented by a pair of weakly interacting oscillators, and we
wherex=(T,;—T,)/T,, and the label®(1) in thebrackets, keep only first order terms ig. This Hamiltonian model is
mean averages with respect to distributid?g,y. In the  very symmetrical, and this fact will enable us to determine
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with a little effort the properties of interest. Following the H=g(x;—X,)2. (34)
formalism outlined in the preceding section, the distribution ) .
Po(Xq,Xo) iS This system can be thought as being formed by two ideal

gases. One of them, described by a fast variagleis in

18,22 12 IBlaXi BzaXE contact with the heat bath at tempe.rat.mﬁe while the. other,
Po(X1,X0) = > exp — 5 5 described by the slow variabbe,, is in contact with the
™ colder heat bath at temperatufg. We can think of these
5 two gases as having very different masses, and the parameter
«| 1+ g_Tl_ 9T1B2%3 v can be related to the ratio between the masses of the light
a2 a and heavy gasell1]. The gases are confined to a limited
region of space betweenL/2<x,; ,<L/2, and we have as-
xg b o sumed a weak interaction between them, as given by Eq.
+ ?—gﬁlxlxz : (28)  (34). As in the case of two coupled harmonic oscillators,

only configurational variables are considered.

The differential equation foA(x,,x,) is given by In this case, we obtain the following expression for

Po(X1,X2):
(92A 2 oA 1 L2
Tl,g_xi_(axl—FzQXle)a_xl Po(Xl,Xz)zp 1"’91_2(314‘,32)_950(%_9,32)(%
2 2 2,2 1
=29(T1=T2)| BaXi+ BaXa— PaBraXXo— 7). +29B1X1X5|. (35
(29 The differential equation foA(x;,X,) is given by
The general solution for this equation is pr JA

P ), , Tlﬁ—Xi—ZQ(xl—xz)a—Xlzo. (36)

A(Xl-Xz):90(X2)+95(523X1X2_X1)a (30

Going along the same steps developed for the case of two
where c(x,) is an arbitrary function of,. To guarantee harmonic oscillators, that is, finding the general solution to

consistency to ordey?, Eq. (16) reduces to first order ing, imposing consistency up to ordef and
applying the orthogonality condition we obtain a very simple
A dA solution forA(X(,X,), which can be written as
T,—5—a =\A. (31

Xo— =
ox2 - Ldxp p
A(Xlaxz):g(ﬂl_BZ)XlXZZ_gT_2X1X2- (37)

Expandingc(x,) in a power series ok, we find that\
=—2a, and c(xp)=a(1-Bax5). The expression for With this expression foA(x;,x,) it is easy to calculate the

A(X4,X,) becomes entropy production and energy dissipation rates. From Egs.
(23) and (25), we find
K
A(X1.X2) = gar—gaBaxs+g_(Baxixs—xi). (32) L LT A a8
Sm—s—er —5 (38)

This solution automatically satisfies the orthogonality condi-

tion. An elegant manner to find the yet undetermined con- . QL2 (T,—Ty)?2 ,(2T,=Ty)

stanta is to explore the symmetries of the differential equa- 1= ET T YTV T o7, | (39

tion for A(xy,X2), Eg. (28. Observing that ! 1 2
A(Xz,Xlziﬁzyﬁl)z—A(Xl.Xzi,Bl.B_z), we find thata= (T, In this problem where we are considering heat transfer
—Ty)/a“. Then, the final expression fé(x;,x,) is between two reservoirs, we can test the validity of the On-

sager relations. These relations were derived originally by
Onsager|3] for the linear regime. In our case this would
correspond to a situation whefg,~T,. If the heat bath
temperatures are not too close, a general expression for the
Once we have determine®i(x,,x,) the entropy production Onsager relation can be employgg] to the nonlinear re-
and energy dissipation calculations follow straightforward. gime, that is,

T,—-T
A(xl,x2>=g(;—zz)u—maxi)(l—ﬂzax%). (33

B. Two ideal gases Q2 dQy (40

. o By By
Now let us consider another example of application of the P 9B
previous formalism. The Hamiltonian model for the system From Eqs.(20) and (23) we can write the following ex-
is taken as pression to ordety:
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(9Q2 (?Ql T2K 2 BlBZ 3 ﬁlBZ 2
e TE_ o A(X1,X5) =gk —5—aX;Xs— gk alLx;X,. (46)
&ﬁl &ﬂz Y Fl <(5F2) >l ( 1172 g 3 12 g 4 172
T, d d 5 The corresponding equations for the entropy production and
+7F—l(,31—,32) <9_ﬁ1+3_,32 ((6F2)%)1. energy dissipation rates are given by
(42) . QL2 (T1—Ty)? o aL? @7
. y oT3r,  Tt2r, VY 10m,)
If ((6F,)%)1=B,f(B1—B,), wheref is any positive func- ! 1l2 !
tion, the Onsager relation, as expressed by(E@), is auto- 21 2 ) )
matically satisfied, even in the nonlinear regime. Particularly, -_9 L* (11— To) _ yzi (2T,—Ty) (48)
for the Hamiltonian model we are considering, given by Eqg. 3I'y T2 10 T4T,

(34), we can show tha{(6F,)2);=g°L?%/3. Therefore, the

Onsager relation breaks down in the nonlinear case. For this As before, this simple interacting system also leads to the

model, it is easy to show that violation of the general Onsager relations in the nonlinear
limit, that is, we have

9Q; '9Q1_ g’LZ T,

IB1 9B, -7 3, T,

(T1=Ta). (42) 0Q2 Qi @ Ty(T1=T))
9B, B, 3l Ty

+0(7%). (49

We would like to stress that even for this very simple model
of two weakly interacting ideal gases the Onsager relations IV. CONCLUSIONS
are violated.
In this work we have analyzed a class of systems far from
C. Ideal gas and harmonic oscillator equilibrium based on the formalism developed by Allahver-
i , dyan and Nieuwenhuizen. They are stochastic systems in
As a final example, we consider a system formed by angniact with two reservoirs at different temperatures. We
os_C|IIat0r mt_eractmg with an ideal gas. T_he Hamiltonian for e considered only the steady adiabatic states of the sys-
this system is chosen to have the following form tems. One of the distinguishing features of these systems is
(43) that they present very different time scales for each one of its
degrees of freedom. When the difference of temperatures of

where the fast variable, is in contact with the heat bath at the two heat baths are large the systems are far from equi-
temperatureT,, and this variable is limited to the region librium. Despite this, a non-Gibbsian stationary probability
—L/2<x;<L/2. The slow variablex,, describes an har- distribution can be associated to the systems due to the huge

monic oscillator in contact with the heat bath at the lowerdifference between the relaxation times found in the studied
temperaturel,. As usual, this variable is unbounded. In or- SyStéms. In the case of two variables, a thermodynamic de-

der to take into account a heat flow between reservoirs, Cfiption is found by a perturbative expansion on the ratio
small coupling term was introduced into the Hamiltonian. Asbetween the relaxation times of the fast and slow variables.

before, only linear terms ig will be allowed. Following the W& have revisited the work of Allahverdyan and Nieuwen-

steps of Sec. II, first we determine the probability distribu-huizen, emphasizing some aspects of their formalism that

tion function Py(Xy,X,), that is seemed important to us. We also considered two different
e ' examples of application, involving steady state situations of

H=3}ax5+g(X;—Xz)?,

Bra 12 Bzaxg 9B8iL2 g some simple coupled Hamiltonian models. In these models
Po(Xq1,X0) = 5 ex;{ i 12 + = we computed the energy dissipation and entropy production
2mL a rates. We also verified the breakdown of the nonlinear On-

sager relations for heat transfer occurring between the heat

—gB1X; — 9B+ 29,31X1x2> _ (44)  baths. Even for the case in which the temperatures of the two
reservoirs are very close we have a violation of the Onsager

relation, because for the models considered the products

Th ial diff ial ion f
e partial differential equation fok(x, ;) reads x g2 are very small and appear in both sides of &d). The

2A IA formalism developed by these authors is interesting and we
Tl—z—Zg(xl—xz)W=29K,32ax1x2. (45  believe it can be extended to more complex interacting sys-
X1 1 tems.

A solution that satisfies the boundary conditions, the eigen-
value equation for consistency to ordgt and the orthogo-
nality condition can be written as This work was supported by the Brazilian agency CNPq.
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